
UNIT-4
Deep Learning: Basics of Deep Learning, Machine Learning Vs Deep

Learning, Fundamental Deep Learning Algorithm-Convolution Neural
Network (CNN).

Q) Describe the Motivation for Deep Learning.
The simple machine learning algorithms work very well on a wide variety of

important problems. However, they have not succeeded in solving the
central problems in AI, such as recognizing speech or recognizing
objects.Deep learning was designed to overcome these and other obstacles.

Q) Define Deep Learning(DL).

Deep learning is an aspect of artificial intelligence (AI) that is to simulate
the activity of the human brain specifically, pattern recognition by passing
input through various layers of the neural network.

Deep-learning architectures such as deep neural networks, deep belief
networks, recurrent neural networks and convolutional neural

networks have been applied to fields including computer vision, machine
vision, speech recognition, natural language processing, audio recognition,
social network filtering, machine translation, bioinformatics, drug

design, medical image analysis, material inspection and board
game programs.

Q)Give brief historical background of Deep Learning.

All the algorithms that are used in deep learning are largely inspired by the
way neurons and neural networks function and process data in the brain.
This image is one of the very first pictures of aneuron. It was drawn by

Santiago Ramon y Cajal, back in 1899 based on what he saw after placing a
pigeon's brain under the microscope. He is now known as the fatherof
modern neuroscience.

Fig. Human Neural Functioning

It is possible to mimic certain parts of neurons, such as dendrites, cell bodies
and axons using simplified mathematical models of what limited knowledge
we have on their inner workings: signals can be received from dendrites, and

sent down the axon once enough signals were received. This outgoing signal

https://searchenterpriseai.techtarget.com/definition/AI-Artificial-Intelligence
https://en.wikipedia.org/wiki/Deep_learning#Deep_neural_networks
https://en.wikipedia.org/wiki/Deep_belief_network
https://en.wikipedia.org/wiki/Deep_belief_network
https://en.wikipedia.org/wiki/Recurrent_neural_networks
https://en.wikipedia.org/wiki/Convolutional_neural_networks
https://en.wikipedia.org/wiki/Convolutional_neural_networks
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Automatic_speech_recognition
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Audio_recognition
https://en.wikipedia.org/wiki/Machine_translation
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Drug_design
https://en.wikipedia.org/wiki/Drug_design
https://en.wikipedia.org/wiki/Medical_image_analysis
https://en.wikipedia.org/wiki/Board_game
https://en.wikipedia.org/wiki/Board_game

can then be used as another input for other neurons, repeating the process.
Some signals are more important than others and can trigger some neurons

to fire easier. Connections can become stronger or weaker, new connections
can appear while others can cease to exist.

Fig. Biological Neuron

An artificial neuron behaves in the same way as a biological neuron. So it

consists of a soma(cell body for processing information), dendrites(input),
and an axon terminal to pass on the output of this neuron to other

neurons. The end of the axon can branch off to connect to many other
neurons.

Q) Differentiate a Biological neuron and and Artificial neuron.

Biological neuron Artificial

neuron

dendrites inputs

synapses weight or inter connection

axon output

cell body (Soma) summation and threshold

Q) Define Artificial Neuron(AN). Explain the computation/processing of
AN with an example.

Neural Networks are networks used in Deep Learning that work similar to
the human nervous system.

An artificial neuron is a mathematical function conceived as a model
of biological neurons, a neural network. Artificial neurons are elementary

units in an artificial neural network.
The artificial neuron receives one or more inputs and sums them to produce
an output by applying some activation function.

Fig. Artificial Neuron

For the above general model of artificial neural network, the net input can
be calculated as follows:

yin= (x1.w1+x2.w2+x3.w3…xm.wm) + bias

i.e., yin= ∑i
mxi.wi+ bias

where, Xi is set of features and Wi is set of weights.
Bias is the information which can impact output without being dependent

on any feature.
The output can be calculated by applying the activation function over the

net input.
Y=F(yin)

Each AN has an internal state, which is called an activation signal. Output

signals, which are produced after combining the input signals and activation
rule, may be sent to other units.
Eg.

Q) Construct a single layer neural network for implementing OR, AND,
NOT gates.

Let us take the activation function as:

The AND function can be implemented as:

The output of this neuron is:a = f(-1.5*1 + x1*1 + x2*1)

Calculation for summation:
X1 = 0, x2 = 0 => f(-1.5 + 0 + 0) = f(-1.5) = 0

0 1 =>f(-1.5 + 0 + 1) = f(-0.5) = 0
1 0 =>f(-1.5 + 1 + 0) =f(-0.5) = 0
1 1 =>f(-1.5 + 1 +1) = f(+0.5) = 1

The truth table for this implementation is:

The OR function can be implemented as:

The output of this neuron is:a = f(-0.5 + x1 + x2)
The truth table for this implementation is:

https://www.analyticsvidhya.com/wp-content/uploads/2016/03/3.-tt-and-1.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/4.-tt-or-1.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/3.-tt-and-1.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/4.-tt-or-1.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/3.-tt-and-1.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/4.-tt-or-1.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/3.-tt-and-1.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/4.-tt-or-1.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/3.-tt-and-1.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/4.-tt-or-1.png

The NOT function can be implemented as:

The output of this neuron is:a = f(1 – 2*x1)
The truth table for this implementation is:

Q) Explain the need for multi-layered neural network with an example.

1. XOR:

XOR(A,B) = (A+B)*(AB)|

This sort of a relationship cannot be modeled using a single neuron. Thus
we will use a multi-layer network.

The idea behind using multiple layers is that complex relations can be
broken into simpler functions and combined.

https://www.analyticsvidhya.com/wp-content/uploads/2016/03/5.-tt-not-2.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/5.-tt-not-2.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/5.-tt-not-2.png

2. XNOR function looks like:

Lets break down the XNOR function.
X1 XNOR X2 = NOT (X1 XOR X2)

 = NOT [(A+B).(A'+B')]
 = (A+B)' + (A'+B')'
 = (A'.B') + (A.B)

a neuron to model A’.B’:

The output of this neuron is:a = f(0.5 – x1 – x2)

The truth table for this function is:

The different outputs represent different units:
a1: implements A‟.B‟

a2: implements A.B
a3: implements OR which works on a1 and a2, thus effectively (A‟.B‟ + A.B)
The functionality can be verified using the truth table:

https://www.analyticsvidhya.com/wp-content/uploads/2016/03/6.-xnor-tt.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/7.-tt-A.B.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/6.-xnor-tt.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/7.-tt-A.B.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/6.-xnor-tt.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/7.-tt-A.B.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/6.-xnor-tt.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/7.-tt-A.B.png

Q) Define activation function. Explain different types of activation

functions.

 Activation Functions are extremely important feature of the Artificial
Neural Network. They basically decide whether a neuron should be

activated or not. It limits the output signal to a finite value.

 Activation Function does the non-linear transformation to the

input making it capable to learn more complex relation between input
and output. It make the network capable of learning more complex
pattern.

 Without an activation function, the neural network is just a linear
regression model as it performs only summation of product of input

and weights.
Eg. In the below image 2 requires a complex relation which is curve unlike a
simple linear relation in image 1.

 Fig. Illustrating the need of Activation Function for a complex problem.

Activation function must be efficient and it should reduce the computation
time because the neural network sometimes trained on millions of data
points.

Types of AF:

The Activation Functions can be basically divided into 3 types-
1. Binary step Activation Function
2. Linear Activation Function

3. Non-linear Activation Functions

1. Binary Step Function

A binary step function is a threshold-based activation function. If the input
value is above or below a certain threshold, the neuron is activated and

https://www.analyticsvidhya.com/wp-content/uploads/2016/03/8.-tt-xnor-case-1.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/03/8.-tt-xnor-case-1.png

sends exactly the same signal to the next layer.We decide some threshold
value to decide output that neuron should be activated or deactivated.It is

very simple and useful to classify binary problems or classifier.
Eg.f(x) = 1 if x > 0 else 0 if x <= 0

2. Linear or Identity Activation Function
As you can see the function is a line or linear. Therefore, the output of the

functions will not be confined between any range.

Fig: Linear Activation Function

Equation: f(x) = x

Range : (-infinity to infinity)
It doesn‟t help with the complexity or various parameters of usual data that
is fed to the neural networks

3. Non-linear Activation Function
The Nonlinear Activation Functions are the most used activation functions.

Nonlinearity helps to makes the graph look something like this.

Fig: Non-linear Activation Function

The main terminologies needed to understand for nonlinear functions are:

Derivative or Differential: Change in y-axis w.r.t. change in x-axis.It is also
known as slope.
Monotonic function: A function which is either entirely non-increasing or

non-decreasing.

The Nonlinear Activation Functions are mainly divided on the basis of

their range or curves-

Advantage of Non-linear function over the Linear function :
Differential is possible in all the non -linear function.
Stacking of network is possible, which helps us in creating deep neural nets.

It makes it easy for the model to generalize

3.1 Sigmoid(Logistic AF)(σ):

The main reason why we use sigmoid function is it exists between 0 to 1.
It is especially used for models where we have to predict the probability as

output. Since probability of anything exists only between the range of 0 and
1, sigmoid is the right choice.

Fig: Sigmoid Function (S-shaped Curve)

The function is differentiable and monotonic. But function derivative is
not monotonic.

The logistic sigmoid function can cause a neural network to get stuck at the
training time.

Advantages
1. Easy to understand and apply

2. Easy to train on small dataset
3. Smooth gradient, preventing “jumps” in output values.

4. Output values bound between 0 and 1, normalizing the output of each
neuron.

Disadvantages:

 Vanishing gradient—for very high or very low values of X, there is
almost no change to the prediction, causing a vanishing gradient
problem. This can result in the network refusing to learn further, or

being too slow to reach an accurate prediction.
 Outputs not zero centered.

 Computationally expensive

3.2 TanH(Hyperbolic Tangent AF):

TanH is also like logistic sigmoid but in better way. The range of the

TanHfunction is from -1 to +1.

TanH is often preferred over the sigmoid neuron because it is zero centred.

The advantage is that the negative inputs will be mapped strongly negative
and the zero inputs will be mapped near zero in tanh graph.

tanh(x) = 2 * sigmoid(2x) - 1

Fig. Sigmoid Vs Tanh

The function is differentiable and monotonic. But function derivative is

not monotonic.
Advantages

 Zero centered—making it easier to model inputs that have strongly

negative, neutral, and strongly positive values.

Disadvantages
 Like the Sigmoid function is also suffers from vanishing gradient

problem
 hard to train on small datasets

3.3 ReLU(Rectified Linear Unit):

The ReLU is the most used activation function. It is used in almost all
convolution neural networks in hidden layers only.
The ReLU is half rectified(from bottom). f(z) = 0, if z < 0

 = z, otherwise
R(z) = max(0,z)

The range is 0 to inf.

Advantages

 Avoids vanishing gradient problem.
 Computationally efficient—allows the network to converge very

quickly
 Non-linear—although it looks like a linear function, ReLU has a

derivative function and allows for backpropagation

Disadvantages

 Can only be used with a hidden layer

 hard to train on small datasets and need much data for learning non-

linear behavior.

 The Dying ReLU problem—when inputs approach zero, or are

negative, the gradient of the function becomes zero, the network
cannot perform backpropagation and cannot learn.

The function and its derivative both are monotonic.
All the negative values are converted into zero, and this conversion rate is so

fast that neither it can map nor fit into data properly which creates a
problem.

Leaky ReLU Activation Function

We needed the Leaky ReLU activation function to solve the „Dying ReLU‟
problem.

 Leaky ReLU we do not make all negative inputs to zero but to a value near
to zero which solves the major issue of ReLU activation function.

R(z) = max(0.1*z,z)

Advantages
 Prevents dying ReLU problem—this variation of ReLU has a small

positive slope in the negative area, so it does enable backpropagation,

even for negative input values
 Otherwise like ReLU

Disadvantages
 Results not consistent—leaky ReLU does not provide consistent

predictions for negative input values.

3.4 Softmax:

 Sigmoid able to handle more than two cases(class label).

 Softmax can handle multiple cases. Softmax function squeeze the
output for each class between 0 and 1 with sum of them is 1.

 It is ideally used in the final output layer of the classifier, where we
are actually trying to attain the probabilities.

 Softmax produces multiple outputs for an input array. For this
reason, we can build neural network models that can classify more

than 2 classes instead of binary class solution.

 sigma = softmax
 zi = input vector

e^{zi}} = standard exponential function for input vector
K = number of classes in the multi-class classifier

e^{zj} = standard exponential function for output vector
e^{zj} = standard exponential function for output vector

Advantages
Able to handle multiple classes only one class in other activation

functions—normalizes the outputs for each class between 0 and 1with the
sum of the probabilities been equal to 1, and divides by their sum, giving the

probability of the input value being in a specific class.
Useful for output neurons—typically Softmax is used only for the output
layer, for neural networks that need to classify inputs into multiple

categories.

Q) Explain about Deep feedforward networks or feedforward neural

networks or multilayer perceptron (MLP).
A deep neural network is a neural network with atleast two hidden layers.

Deep neural networks use sophisticated mathematical modeling to process
data in different ways.Traditional machine learning algorithms are linear,
deep learning algorithms are stacked in a hierarchy.

Fig. Deep Feedforward Network

Deep learning creates many layers of neurons, attempting to learn

structured representation, layer by layer.

The goal of a feedforward network is to approximate some function f ∗. For

example,for a classifier, y = f ∗(x) maps an input x to a category y.

A feedforward network defines a mapping y = f (x; θ) and learns the value of

the parameters θ that result in the best function approximation.

These models are called feedforward because information flows through the

function being evaluated from x, through the intermediate computations

https://searchenterpriseai.techtarget.com/definition/machine-learning-ML
https://whatis.techtarget.com/definition/algorithm
https://whatis.techtarget.com/definition/hierarchy

used to define f, and finally to the output y. There are no feedback
connections in which outputs of the model are fed back into itself.

When feedforward neural networks are extended to include feedback

connections, they are called recurrent neural networks.

Feedforward networks are of extreme importance to machine learning

practitioners.They form the basis of many important commercial
applications. Forexample, the convolutional networks used for object
recognition from photos are aspecialized kind of feedforward network.

Feedforward neural networks are called networks because they are typically

represented by composing together many different functions. The model is
associated with a directed acyclic graph describing how the functions are
composed together.

For example, we might have three functions f (1), f (2), and f (3) connected in a

chain, to form f(x) = f(3)(f (2)(f(1) (x))). This chain structure is most commonly
used structure of neural networks. In this case, f (1) is called the first layer of
the network called input layer used to feed the input into the network; f (2)

is called the second layer called hidden layer used to train the neural
network, and so on. The final layer of a feedforward network is called the
output layer that provides the output of the network. The overall length of

the chain gives the depth of the model and width of the model is number of
neurons in the input layer. It is from this terminology that the name “deep

learning” arises.

Q) Differentiate ML & DL.
1. Data dependencies for Performance:
When the data is small, deep learning algorithms don‟t perform that well.

This is because deep learning algorithms need a large amount of data to
understand it perfectly. On the other hand, traditional machine learning

algorithms with their handcrafted rules prevail in this scenario.

2. Hardware dependencies
Deep learning algorithms heavily depend on high-end machines, contrary to

traditional machine learning algorithms, which can work on low-end
machines. Deep learning algorithms inherently do a large amount of matrix

multiplication operations. These operations can be efficiently optimized
using a GPU.

3. Feature engineering:
Feature engineering is the process of transforming raw data into features
that better represent the underlying problem to the predictive models,

resulting in improved model accuracy on unseen data.Feature engineering
turn your inputs into things the algorithm can understand.

In Machine learning, most of the applied features need to be identified

by an expert and then hand-coded as per the domain and data type.

Features can be pixel values, shape, textures, position and orientation. The
performance of most of the Machine Learning algorithm depends on how

accurately the features are identified and extracted.

Deep learning algorithms try to learn high-level features from data.

Deep learning reduces the task of developing new feature extractor for every
problem. Like, Convolutional NN will try to learn low-level features such as
edges and lines in early layers then parts of faces of people and then high-

level representation of a face.

4. Problem Solving approach
When solving a problem using traditional machine learning algorithm, it is

generally recommended to break the problem down into different parts,
solve them individually and combine them to get the result. Deep learning in

contrast advocates to solve the problem end-to-end.
Eg. Suppose you have a task of multiple object detection. The task is to
identify what is the object and where is it present in the image.

In a typical ML approach, you would divide the problem into two steps,
object detection and object recognition

On the contrary, in deep learning approach, you would do the process

end-to-end.

5. Execution time
Usually, a deep learning algorithm takes a long time to train. This is
because there are so many parameters in a deep learning algorithm that

training them takes longer than usual. Whereas machine learning
comparatively takes much less time to train, ranging from a few seconds to

a few hours.
This is turn is completely reversed on testing time. At test time, deep

learning algorithm takes much less time to run. Whereas, if you compare it
with k-nearest neighbors (ML algorithm), test time increases on increasing
the size of data. Although this is not applicable on all machine learning

algorithms, as some of them have small testing times too.

6. Interpretability:

Suppose we use deep learning to give automated scoring to essays. The
performance it gives in scoring is quite excellent and is near human

performance. But there‟s is an issue. It does not reveal why it has given that
score. Indeed mathematically you can find out which nodes of a deep neural
network were activated, but we don‟t know what there neurons were

supposed to model and what these layers of neurons were doing collectively.
So we fail to interpret the results.

On the other hand, machine learning algorithms like decision trees
give us crisp rules as to why it chose what it chose, so it is particularly easy
to interpret the reasoning behind it. Therefore, algorithms like decision trees

and linear/logistic regression are primarily used in industry for
interpretability.

Characteristic ML DL

Data dependencies for
Performance

requires less amount of
data for identifying
rules

requires large amount
of data for better
performance

Hardware dependencies
work on low-end
machines

heavily depend on high-
end machines

Feature engineering

features need to be
identified by an expert

and then hand-coded as
per the domain and
data type

Deep learning
algorithms try to learn

high-level features from
data.
Deep learning reduces

the task of developing
new feature extractor
for every problem.

Problem Solving

approach

Break the problem into
parts, finds and

combines the solution

Solves the problem end-

to-end

Execution time Takes more time for
training and less time

for testing

Takes much small time

for training but may
take more time for
testing depending on

the algorithm like KNN

Interpretability

Fails to interpret the

results

Easy to interpret the

results

Q) Explain various applications of Deep Learning.

There are various interesting applications for Deep Learning that made
impossible things before a decade into reality. Some of them are:

1. Color restoration, where a given image in greyscale is automatically
turned into a colored one.

2. Recognizing hand written message.

3. Adding sound to a silent video that matches with the scene taking
place.

4. Self-driving cars

5. Computer Vision: for applications like vehicle number plate
identification and facial recognition.

6. Information Retrieval: for applications like search engines, both text
search, and image search.

7. Marketing: for applications like automated email marketing, target

identification
8. Medical Diagnosis: for applications like cancer identification, anomaly

detection
9. Natural Language Processing: for applications like sentiment analysis,

photo tagging

10. Online Advertising, etc

Q) Briefly explain about loss function in neural networks.

Neural Network uses optimising strategies to minimize the error in the
algorithm. The way we actually compute this error is by using a Loss

Function. It is used to quantify how good or bad the model is performing.
These are divided into two categories i.e. Regression loss and Classification
Loss.

1. Regression Loss Function

Regression Loss is used when we are predicting continuous values like the
price of a house or sales of a company.

https://trainings.analyticsvidhya.com/courses/course-v1:AnalyticsVidhya+TSA001+2018_T1/about?utm_source=blog&utm_medium=comparison-between-deep-learning-machine-learning

Eg. Mean Squared Error
Mean Squared Error is the mean of squared differences between the actual

and predicted value. If the difference is large the model will penalize it as we
are computing the squared difference.

2. Binary Classification Loss Function
Suppose we are dealing with a Yes/No situation like “a person has diabetes
or not”, in this kind of scenario Binary Classification Loss Function is used.

Eg. Binary Cross Entropy Loss
It gives the probability value between 0 and 1 for a classification task.
Cross-Entropy calculates the average difference between the predicted and

actual probabilities.
3. Multi-Class Classification Loss Function

If we take a dataset like Iris where we need to predict the three-class labels:
Setosa, Versicolor and Virginia, in such cases where the target variable has
more than two classes Multi-Class Classification Loss function is used.

Eg. Categorical Cross Entropy Loss:
These are similar to binary classification cross-entropy, used for multi-class

classification problems.

Q) Explain briefly about gradient descent algorithm.
A deep learning neural network learns to map a set of inputs to a set of
outputs from training data. We cannot calculate the perfect weights for a

neural network.
Gradient descent is an iterative optimization algorithm for finding the

minimum of a function.
To find the minimum of a function using gradient descent, one takes

steps proportional to the negative of the gradient of the function at the

current point.
The “gradient” in gradient descent refers to an error gradient. The

model with a given set of weights is used to make predictions and the error
for those predictions is calculated.
Eg.

Fig. Gradient Descent

The gradient is given by the slope of the tangent at w = 0.2, and then the
magnitude of the step is controlled by a parameter called the learning rate.

The larger the learning rate, the bigger the step we take, and the smaller the
learning rate, the smaller the step we take. Then we take the step and we

move to w1.
Now when choosing the learning rate, we have to be very careful as a large
learning rate can lead to big steps and eventually missing the minimum.

On the other hand, a small learning rate can result in very small steps and
therefore causing the algorithm to take a long time to find the minimum
point.

Q) Explain about Back propagation algorithm.

Back-propagation is the essence of neural net training. It is the method of

fine-tuning the weights of a neural net based on the error rate obtained in
the previous epoch (i.e., iteration). Proper tuning of the weights allows you to
reduce error rates and to make the model reliable by increasing its

generalization.

The algorithm is used to effectively train a neural network through a method
called chain rule. In simple terms, after each forward pass through a
network, back propagation performs a backward pass while adjusting the

model‟s parameters (weights and biases).

Algorithm:
1. Initialize the weights and biases.
2. Iteratively repeat the following steps until defined number of times or

threshold value is reached:
i. Calculate network output using forward propagation.
ii. Calculate error between actual and predicted values.

iii. Propagate the error back into the network and update weights
and biases using the equations:

Fig. illustrating BP

Example:
Forward Propagation:

Therefore,

z1 = 0.415 a1 = 0.6023 z2 = 0.9210 a2 = 0.7153

Let us consider,

epochs = 1000 threshold = 0.001
learning rate = 0.4 T = 0.25

4.
E = 1/2(T-a2)2 = 0.1083

Eqn # 1: 𝑧1 = 𝑥1 ∙ 𝑤1 + 𝑏1

 Eqn # 2: 𝑎1 = (𝑧1) = 1/(1+ 𝑒 −𝑧1)

Eqn # 3: 𝑧2 = 𝑎1 ∙ 𝑤2 + 𝑏2

Eqn # 4: 𝑎2 = (𝑧2) = 1 /(1+ 𝑒 −𝑧2)

 Eqn # 5: 𝐸 = 1 /2 (𝑇 − 𝑎2)2

Updating w2:

 = 0.45 - 0.4(-(0.25-0.7153))*(0.7153(1-0.7153))*(0.6023)

 = 0.45 - 0.4*0.05706
 = 0.427
Updating b2:

 = 0.65 - 0.4*(-(0.25-0.7153))*(0.7153(1-0.7153))*1
 = 0.65 - 0.4*0.0948

 = 0.612
Updating w1:

 = 0.15 - 0.4*(-(0.25-0.7153))*(0.7153(1 -0.7153))*0.45*0.6023(1-
0.6023)*0.1

 = 0.15 - 0.4*0.001021
 = 0.1496
Updating w2:

 = 0.40 - 0.4*(-(0.25-0.7153))*(0.7153(1-0.7153))*0.45*0.6023(1-
0.6023)*1

 = 0.40-0.4*0.01021
 = 0.3959

Therefore we continue next iteration(feedforward) with the update
values of w1,b1,w2 and b2.
w1 = 0.1496 b1 = 0.3959 w2 = 0.427 b2 = 0.612

x1 = 0.1.

Q) What is Vanishing Gradient problem?

As more layers using certain activation functions are added to neural
networks, the gradients of the loss function approaches zero, making the

network hard to train.

Eg. In the below problem the derivatives with respect to weights are very

small.

So when we do back propagation, we keep multiplying the factors that are
less than 1 by each other and gradients tend to smaller and smaller by

moving backward in the network.
This means the neurons in the earlier layers learn very slowly. The result is

a training process that takes too long and prediction accuracy is
compromised.

Q) Explain indetail about CNN model.

MLP‟s use one perceptron for each input (e.g. pixel in an image, multiplied
by 3 in RGB case). The amount of weights rapidly becomes unmanageable
for large images. For a 224 x 224 pixel image with 3 color channels there are

around 150,528 weights that must be trained! As a result, difficulties arise
whilst training and overfitting can occur.

A Convolutional neural network (CNN) is a neural network that has one or
more convolutional layers and is used mainly for image processing,

classification, segmentation.

Fig. CNN Architecture

Input layer:

The input to a cnn, is mostly an image(nxmx1-gray scale image and nxmx3-
colored image)

Fig. RGB image as input

Convolution layer:

Here, we basically define filters and we compute the convolution between the
defined filters and each of the 3 images.

Fig. convolution operation

In the same way we apply to remaining (above is for red image, then we do
same for green and blue) images. We can apply more than one filter. More
filters we use, we can preserve spatial dimensions better.

We use convolution instead of considering flatten image as input as we will

end up with a massive number of parameters that will need to be optimized
and computationally expensive.
Eg. We require 25 weights if we take 5x5x1 image with out convolution.

 We require 16 weights(n-f+1 x n-f+1) if we take 5x5x1 image with 2x2
convolution filter.

By using convolution we can prevent overfitting of the model.

It is worth to have ReLU activation function in convolution layer which
passed only positive values and make negative values to zeros.

Pooling layer:
Pooling layer objective is to reduce the spatial dimensions of the data

propagating through the network.

1. Max Pooling is the most common, for each section of the
image we scan and keep the highest value.

Fig. Max Pooling with stride = 2

Max. pooling provides spatial variance which enables the neural network to

recognize objects in an image even if the object does not exactly resemble
the original object.

2 Average Pooling: Here, we take average of area we scan.

Fig. Average Pooling with stride = 2

Fully Connected Layer:
Here, we flatten the output of the last convolutional layer

and connect every node of the current layer with every
other node of the next layer.

This layer basically takes output of the preceding layer,
whether it is a convolutional layer, ReLU or Pooling layer

and outputs an n-dimensional vector, where n is
number of classes pertaining to the problem.

Fig. Fully Connected Layer

Q) Differentiate Shallow NN and Deep NN.

Shallow Neural Network Deep Neural Network

It consists of one hidden layer It consists of more than one hidden
layer

It takes input as vectors only It takes raw data like images and
text as input.

