
UNIT-4 
Deep Learning: Basics of Deep Learning, Machine Learning Vs Deep 

Learning, Fundamental Deep Learning Algorithm-Convolution Neural 
Network (CNN). 

 
Q) Describe the Motivation for Deep Learning. 
The simple machine learning algorithms work very well on a wide variety of 

important problems. However, they have not succeeded in solving the 
central problems in AI, such as recognizing speech or recognizing 
objects.Deep learning was designed to overcome these and other obstacles. 

 
Q) Define Deep Learning(DL). 

Deep learning is an aspect of artificial intelligence (AI) that is to simulate 
the activity of the human brain specifically, pattern recognition by passing 
input through various layers of the neural network. 

Deep-learning architectures such as deep neural networks, deep belief 
networks, recurrent neural networks and convolutional neural 

networks have been applied to fields including computer vision, machine 
vision, speech recognition, natural language processing, audio recognition, 
social network filtering, machine translation, bioinformatics, drug 

design, medical image analysis, material inspection and board 
game programs. 
 

 
Q)Give brief historical background of Deep Learning. 

All the algorithms that are used in deep learning are largely inspired by the 
way neurons and neural networks function and process data in the brain. 
This image is one of the very first pictures of aneuron. It was drawn by 

Santiago Ramon y Cajal, back in 1899 based on what he saw after placing a 
pigeon's brain under the microscope. He is now known as the fatherof 
modern neuroscience. 

 
Fig. Human Neural Functioning 

It is possible to mimic certain parts of neurons, such as dendrites, cell bodies 
and axons using simplified mathematical models of what limited knowledge 
we have on their inner workings: signals can be received from dendrites, and 

sent down the axon once enough signals were received. This outgoing signal 
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can then be used as another input for other neurons, repeating the process. 
Some signals are more important than others and can trigger some neurons 

to fire easier. Connections can become stronger or weaker, new connections 
can appear while others can cease to exist.  

 

 
Fig. Biological Neuron 

An artificial neuron behaves in the same way as a biological neuron. So it 

consists of a soma(cell body for processing information), dendrites(input), 
and an axon terminal to pass on the output of this neuron to other 

neurons. The end of the axon can branch off to connect to many other 
neurons. 
 

Q) Differentiate a Biological neuron and and Artificial neuron. 

Biological neuron  Artificial  

neuron  

dendrites  inputs  

synapses  weight or inter connection 

axon  output  

cell body (Soma) summation and threshold  

 

Q) Define Artificial Neuron(AN). Explain the computation/processing of 
AN with an example. 

 
Neural Networks are networks used in Deep Learning that work similar to 
the human nervous system. 

An artificial neuron is a mathematical function conceived as a model 
of biological neurons, a neural network. Artificial neurons are elementary 

units in an artificial neural network.  
The artificial neuron receives one or more inputs and sums them to produce 
an output by applying some activation function. 



 
Fig. Artificial Neuron 

 

For the above general model of artificial neural network, the net input can 
be calculated as follows: 

yin= (x1.w1+x2.w2+x3.w3…xm.wm) + bias 

i.e.,  yin= ∑i
mxi.wi+ bias 

where, Xi is set of features and Wi is set of weights. 
Bias is the information which can impact output without being dependent 

on any feature. 
The output can be calculated by applying the activation function over the 

net input. 
Y=F(yin) 

Each AN has an internal state, which is called an activation signal. Output 

signals, which are produced after combining the input signals and activation 
rule, may be sent to other units. 
Eg. 

 

 
 

 
 
 

 
 

 



Q) Construct a single layer neural network for implementing OR, AND, 
NOT gates. 

 
Let us take the activation function as: 

 
The AND function can be implemented as: 

 
The output of this neuron is:a = f( -1.5*1 + x1*1 + x2*1 ) 

Calculation for summation: 
X1 = 0, x2 = 0 => f(-1.5 + 0 + 0) = f(-1.5) = 0 

0 1 =>f(-1.5 + 0 + 1) = f(-0.5) = 0 
1 0 =>f(-1.5 + 1 + 0) =f(-0.5) = 0 
1 1 =>f(-1.5 + 1 +1) = f(+0.5) = 1  

The truth table for this implementation is: 

 
 

The OR function can be implemented as: 

 
The output of this neuron is:a = f( -0.5 + x1 + x2 ) 
The truth table for this implementation is: 
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The NOT function can be implemented as: 

 
The output of this neuron is:a = f( 1 – 2*x1 ) 
The truth table for this implementation is: 

 
 

 
Q) Explain the need for multi-layered neural network with an example. 
 

1. XOR: 
 
XOR(A,B) = (A+B)*(AB)| 

This sort of a relationship cannot be modeled using a single neuron. Thus 
we will use a multi-layer network.  

The idea behind using multiple layers is that complex relations can be 
broken into simpler functions and combined. 
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2. XNOR function looks like: 

 
 

Lets break down the XNOR function. 
X1 XNOR X2 = NOT ( X1 XOR X2 ) 

                   = NOT [ (A+B).(A'+B') ]        
                   = (A+B)' + (A'+B')' 
                   = (A'.B') + (A.B) 

a neuron to model A’.B’: 

 
The output of this neuron is:a = f( 0.5 – x1 – x2 ) 

The truth table for this function is: 

 
 

 
 

The different outputs represent different units: 
a1: implements A‟.B‟ 

a2: implements A.B 
a3: implements OR which works on a1 and a2, thus effectively (A‟.B‟ + A.B) 
The functionality can be verified using the truth table: 
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Q) Define activation function. Explain different types of activation 

functions. 
 

 Activation Functions are extremely important feature of the Artificial 
Neural Network. They basically decide whether a neuron should be 

activated or not. It limits the output signal to a finite value. 

 Activation Function does the non-linear transformation to the 

input making it capable to learn more complex relation between input 
and output. It make the network capable of learning more complex 
pattern. 

 Without an activation function, the neural network is just a linear 
regression model as it performs only summation of product of input 

and weights. 
Eg. In the below image 2 requires a complex relation which is curve unlike a 
simple linear relation in image 1.

 
 Fig. Illustrating the need of Activation Function for a complex problem. 
 

Activation function must be efficient and it should reduce the computation 
time because the neural network sometimes trained on millions of data 
points. 

 
Types of AF: 

The Activation Functions can be basically divided into 3 types- 
1. Binary step Activation Function 
2. Linear Activation Function 

3. Non-linear Activation Functions 
 

1. Binary Step Function 

A binary step function is a threshold-based activation function. If the input 
value is above or below a certain threshold, the neuron is activated and 
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sends exactly the same signal to the next layer.We decide some threshold 
value to decide output that neuron should be activated or deactivated.It is 

very simple and useful to classify binary problems or classifier. 
Eg.f(x) = 1 if x > 0 else 0 if x <= 0 

 
 

2. Linear or Identity Activation Function 
As you can see the function is a line or linear. Therefore, the output of the 

functions will not be confined between any range. 

 
Fig: Linear Activation Function 

Equation: f(x) = x 

Range : (-infinity to infinity) 
It doesn‟t help with the complexity or various parameters of usual data that 
is fed to the neural networks 

3. Non-linear Activation Function 
The Nonlinear Activation Functions are the most used activation functions. 

Nonlinearity helps to makes the graph look something like this. 



 
Fig: Non-linear Activation Function 

The main terminologies needed to understand for nonlinear functions are: 

Derivative or Differential: Change in y-axis w.r.t. change in x-axis.It is also 
known as slope. 
Monotonic function: A function which is either entirely non-increasing or 

non-decreasing. 
 
The Nonlinear Activation Functions are mainly divided on the basis of 

their range or curves- 
 

Advantage of Non-linear function over the Linear function : 
Differential is possible in all the non -linear function. 
Stacking of network is possible, which helps us in creating deep neural nets. 

It makes it easy for the model to generalize  
 
3.1 Sigmoid(Logistic AF)(σ): 

The main reason why we use sigmoid function is it exists between 0 to 1. 
It is especially used for models where we have to predict the probability as 

output. Since probability of anything exists only between the range of 0 and 
1, sigmoid is the right choice. 

 
Fig: Sigmoid Function (S-shaped Curve) 

The function is differentiable and monotonic. But function derivative is 
not monotonic. 

The logistic sigmoid function can cause a neural network to get stuck at the 
training time. 
 



Advantages 
1. Easy to understand and apply 

2. Easy to train on small dataset 
3. Smooth gradient, preventing “jumps” in output values. 

4. Output values bound between 0 and 1, normalizing the output of each 
neuron. 

Disadvantages: 

 Vanishing gradient—for very high or very low values of X, there is 
almost no change to the prediction, causing a vanishing gradient 
problem. This can result in the network refusing to learn further, or 

being too slow to reach an accurate prediction. 
 Outputs not zero centered. 

 Computationally expensive 
 
3.2 TanH(Hyperbolic Tangent AF): 

 
TanH is also like logistic sigmoid but in better way. The range of the 

TanHfunction is from -1 to +1. 
 
TanH is often preferred over the sigmoid neuron because it is zero centred. 

The advantage is that the negative inputs will be mapped strongly negative 
and the zero inputs will be mapped near zero in tanh graph. 

 
tanh(x) = 2 * sigmoid(2x) - 1  
 

 
Fig. Sigmoid Vs Tanh 

 
The function is differentiable and monotonic. But function derivative is 

not monotonic. 
Advantages 

 Zero centered—making it easier to model inputs that have strongly 

negative, neutral, and strongly positive values. 



Disadvantages 
 Like the Sigmoid function is also suffers from vanishing gradient 

problem 
 hard to train on small datasets 

 
3.3 ReLU(Rectified Linear Unit): 
 

The ReLU is the most used activation function. It is used in almost all 
convolution neural networks in hidden layers only. 
The ReLU is half rectified(from bottom). f(z) = 0, if z < 0 

                                                                   = z, otherwise 
R(z) = max(0,z) 

The range is 0 to inf. 
 
Advantages 

 Avoids vanishing gradient problem. 
 Computationally efficient—allows the network to converge very 

quickly 
 Non-linear—although it looks like a linear function, ReLU has a 

derivative function and allows for backpropagation 

 
Disadvantages 

 Can only be used with a hidden layer 

 hard to train on small datasets and need much data for learning non-

linear behavior. 

 The Dying ReLU problem—when inputs approach zero, or are 

negative, the gradient of the function becomes zero, the network 
cannot perform backpropagation and cannot learn. 

 

 
The function and its derivative both are monotonic. 
All the negative values are converted into zero, and this conversion rate is so 

fast that neither it can map nor fit into data properly which creates a 
problem. 
 



Leaky ReLU Activation Function 
 

We needed the Leaky ReLU activation function to solve the „Dying ReLU‟ 
problem. 

 Leaky ReLU we do not make all negative inputs to zero but to a value near 
to zero which solves the major issue of ReLU activation function. 

 
R(z) = max(0.1*z,z) 
 

Advantages 
 Prevents dying ReLU problem—this variation of ReLU has a small 

positive slope in the negative area, so it does enable backpropagation, 

even for negative input values 
 Otherwise like ReLU 

Disadvantages 
 Results not consistent—leaky ReLU does not provide consistent 

predictions for negative input values. 

 
3.4 Softmax: 

 

 Sigmoid able to handle more than two cases(class label). 

 Softmax can handle multiple cases. Softmax function squeeze the 
output for each class between 0 and 1 with sum of them is 1. 

 It is ideally used in the final output layer of the classifier, where we 
are actually trying to attain the probabilities. 

 Softmax produces multiple outputs for an input array. For this 
reason, we can build neural network models that can classify more 

than 2 classes instead of binary class solution. 

 
              sigma = softmax 
              zi                  = input vector 

e^{zi}}      = standard exponential function for input vector 
K      = number of classes in the multi-class classifier 

e^{zj}       = standard exponential function for output vector 
e^{zj}       = standard exponential function for output vector 



Advantages 
Able to handle multiple classes only one class in other activation 

functions—normalizes the outputs for each class between 0 and 1with the 
sum of the probabilities been equal to 1, and divides by their sum, giving the 

probability of the input value being in a specific class. 
Useful for output neurons—typically Softmax is used only for the output 
layer, for neural networks that need to classify inputs into multiple 

categories. 
 
Q) Explain about Deep feedforward networks or feedforward neural 

networks or multilayer perceptron (MLP). 
A deep neural network is a neural network with atleast two hidden layers. 

Deep neural networks use sophisticated mathematical modeling to process 
data in different ways.Traditional machine learning algorithms are linear, 
deep learning algorithms are stacked in a hierarchy.  

 

 
Fig. Deep Feedforward Network 

Deep learning creates many layers of neurons, attempting to learn 

structured representation, layer by layer. 

 
The goal of a feedforward network is to approximate some function f ∗. For 

example,for a classifier, y = f ∗(x) maps an input x to a category y.  
 
A feedforward network defines a mapping y = f (x; θ) and learns the value of 

the parameters θ that result in the best function approximation. 
 
These models are called feedforward because information flows through the 

function being evaluated from x, through the intermediate computations 
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used to define f, and finally to the output y. There are no feedback 
connections in which outputs of the model are fed back into itself. 

 
When feedforward neural networks are extended to include feedback 

connections, they are called recurrent neural networks. 
 
Feedforward networks are of extreme importance to machine learning 

practitioners.They form the basis of many important commercial 
applications. Forexample, the convolutional networks used for object 
recognition from photos are aspecialized kind of feedforward network.  

 
Feedforward neural networks are called networks because they are typically 

represented by composing together many different functions. The model is 
associated with a directed acyclic graph describing how the functions are 
composed together.  

 
For example, we might have three functions f (1), f (2), and f (3) connected in a 

chain, to form f(x) = f(3)(f (2)(f(1) (x ))). This chain structure is  most commonly 
used structure of neural networks. In this case, f (1) is called the first layer of 
the network called input layer used to feed the input into the network; f (2) 

is called the second layer called hidden layer used to train the neural 
network, and so on. The final layer of a feedforward network is called the 
output layer that provides the output of the network.  The overall length of 

the chain gives the depth of the model and width of the model is number of 
neurons in the input layer. It is from this terminology that the name “deep 

learning” arises.  
 
 

Q) Differentiate ML & DL. 
1. Data dependencies for Performance: 
When the data is small, deep learning algorithms don‟t perform that well. 

This is because deep learning algorithms need a large amount of data to 
understand it perfectly. On the other hand, traditional machine learning 

algorithms with their handcrafted rules prevail in this scenario. 

 
 

 
 



2. Hardware dependencies 
Deep learning algorithms heavily depend on high-end machines, contrary to 

traditional machine learning algorithms, which can work on low-end 
machines. Deep learning algorithms inherently do a large amount of matrix 

multiplication operations. These operations can be efficiently optimized 
using a GPU. 
 

3. Feature engineering: 
Feature engineering is the process of transforming raw data into features 
that better represent the underlying problem to the predictive models, 

resulting in improved model accuracy on unseen data.Feature engineering 
turn your inputs into things the algorithm can understand. 

 
In Machine learning, most of the applied features need to be identified 

by an expert and then hand-coded as per the domain and data type. 

Features can be pixel values, shape, textures, position and orientation. The 
performance of most of the Machine Learning algorithm depends on how 

accurately the features are identified and extracted. 
 

Deep learning algorithms try to learn high-level features from data. 

Deep learning reduces the task of developing new feature extractor for every 
problem. Like, Convolutional NN will try to learn low-level features such as 
edges and lines in early layers then parts of faces of people and then high-

level representation of a face. 

 
 

4. Problem Solving approach 
When solving a problem using traditional machine learning algorithm, it is 

generally recommended to break the problem down into different parts, 
solve them individually and combine them to get the result. Deep learning in 

contrast advocates to solve the problem end-to-end. 
Eg. Suppose you have a task of multiple object detection. The task is to 
identify what is the object and where is it present in the image. 

In a typical ML approach, you would divide the problem into two steps, 
object detection and object recognition 

On the contrary, in deep learning approach, you would do the process 

end-to-end.  
 

5. Execution time 
Usually, a deep learning algorithm takes a long time to train. This is 
because there are so many parameters in a deep learning algorithm that 



training them takes longer than usual. Whereas machine learning 
comparatively takes much less time to train, ranging from a few seconds to 

a few hours. 
This is turn is completely reversed on testing time. At test time, deep 

learning algorithm takes much less time to run. Whereas, if you compare it 
with k-nearest neighbors (ML algorithm), test time increases on increasing 
the size of data. Although this is not applicable on all machine learning 

algorithms, as some of them have small testing times too. 
 

6. Interpretability:  

Suppose we use deep learning to give automated scoring to essays. The 
performance it gives in scoring is quite excellent and is near human 

performance. But there‟s is an issue. It does not reveal why it has given that 
score. Indeed mathematically you can find out which nodes of a deep neural 
network were activated, but we don‟t know what there neurons were 

supposed to model and what these layers of neurons were doing collectively. 
So we fail to interpret the results. 

On the other hand, machine learning algorithms like decision trees 
give us crisp rules as to why it chose what it chose, so it is particularly easy 
to interpret the reasoning behind it. Therefore, algorithms like decision trees 

and linear/logistic regression are primarily used in industry for 
interpretability. 
 

Characteristic ML DL 

Data dependencies for 
Performance 

requires less amount of 
data for identifying 
rules 

requires large amount 
of data for better 
performance 

Hardware dependencies 
work on low-end 
machines 

heavily depend on high-
end machines 

Feature engineering 

features need to be 
identified by an expert 

and then hand-coded as 
per the domain and 
data type 

Deep learning 
algorithms try to learn 

high-level features from 
data.  
Deep learning reduces 

the task of developing 
new feature extractor 
for every problem.  

Problem Solving 

approach 

Break the problem into 
parts, finds and 

combines the solution 

Solves the problem end-

to-end 

Execution time Takes more time for 
training and less time 

for testing 

Takes much small time 

for training but may 
take more time for 
testing depending on 

the algorithm like KNN 

Interpretability 

Fails to interpret the 

results 

Easy to interpret the 

results 

 

 



Q) Explain various applications of Deep Learning. 
 

There are various interesting applications for Deep Learning that made 
impossible things before a decade into reality. Some of them are: 

1. Color restoration, where a given image in greyscale is automatically 
turned into a colored one. 

2. Recognizing hand written message. 

3. Adding sound to a silent video that matches with the scene taking 
place. 

4. Self-driving cars 

5. Computer Vision: for applications like vehicle number plate 
identification and facial recognition. 

6. Information Retrieval: for applications like search engines, both text 
search, and image search. 

7. Marketing: for applications like automated email marketing, target 

identification 
8. Medical Diagnosis: for applications like cancer identification, anomaly 

detection 
9. Natural Language Processing: for applications like sentiment analysis, 

photo tagging 

10. Online Advertising, etc 
 

 
 
 

  
Q) Briefly explain about loss function in neural networks. 
 

Neural Network uses optimising strategies to minimize the error in the 
algorithm. The way we actually compute this error is by using a Loss 

Function. It is used to quantify how good or bad the model is performing. 
These are divided into two categories i.e. Regression loss and Classification 
Loss. 

 
1. Regression Loss Function 

Regression Loss is used when we are predicting continuous values like the 
price of a house or sales of a company. 
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Eg. Mean Squared Error 
Mean Squared Error is the mean of squared differences between the actual 

and predicted value. If the difference is large the model will penalize it as we 
are computing the squared difference. 

2. Binary Classification Loss Function 
Suppose we are dealing with a Yes/No situation like “a person has diabetes 
or not”, in this kind of scenario Binary Classification Loss Function is used. 

Eg. Binary Cross Entropy Loss 
It gives the probability value between 0 and 1 for a classification task. 
Cross-Entropy calculates the average difference between the predicted and 

actual probabilities. 
3. Multi-Class Classification Loss Function 

If we take a dataset like Iris where we need to predict the three-class labels: 
Setosa, Versicolor and Virginia, in such cases where the target variable has 
more than two classes Multi-Class Classification Loss function is used. 

Eg. Categorical Cross Entropy Loss: 
These are similar to binary classification cross-entropy, used for multi-class 

classification problems. 
 
 

Q) Explain briefly about gradient descent algorithm. 
A deep learning neural network learns to map a set of inputs to a set of 
outputs from training data. We cannot calculate the perfect weights for a 

neural network. 
Gradient descent is an iterative optimization algorithm for finding the 

minimum of a function.  
To find the minimum of a function using gradient descent, one takes 

steps proportional to the negative of the gradient of the function at the 

current point. 
The “gradient” in gradient descent refers to an error gradient. The 

model with a given set of weights is used to make predictions and the error 
for those predictions is calculated. 
Eg. 

 

Fig. Gradient Descent 



The gradient is given by the slope of the tangent at w = 0.2, and then the 
magnitude of the step is controlled by a parameter called the learning rate. 

The larger the learning rate, the bigger the step we take, and the smaller the 
learning rate, the smaller the step we take. Then we take the step and we 

move to w1.  
Now when choosing the learning rate, we have to be very careful as a large 
learning rate can lead to big steps and eventually missing the minimum. 

On the other hand, a small learning rate can result in very small steps and 
therefore causing the algorithm to take a long time to find the minimum 
point.  

 

 

Q) Explain about Back propagation algorithm. 
 
Back-propagation is the essence of neural net training. It is the method of 

fine-tuning the weights of a neural net based on the error rate obtained in 
the previous epoch (i.e., iteration). Proper tuning of the weights allows you to 
reduce error rates and to make the model reliable by increasing its 

generalization. 
 

The algorithm is used to effectively train a neural network through a method 
called chain rule. In simple terms, after each forward pass through a 
network, back propagation performs a backward pass while adjusting the 

model‟s parameters (weights and biases). 
 

Algorithm: 
1. Initialize the weights and biases. 
2. Iteratively repeat the following steps until defined number of times or 

threshold value is reached: 
i. Calculate network output using forward propagation. 
ii. Calculate error between actual and predicted values. 

iii. Propagate the error back into the network and update weights 
and biases using the equations: 

 

 
Fig. illustrating BP 

 

 



Example: 
Forward Propagation: 

 
 

 
Therefore, 

z1 = 0.415  a1 = 0.6023  z2 = 0.9210  a2 = 0.7153 

 
Let us consider, 

epochs = 1000  threshold = 0.001 
learning rate = 0.4  T = 0.25 
 

4.  
E = 1/2(T-a2)2  = 0.1083 

Eqn # 1: 𝑧1 = 𝑥1 ∙ 𝑤1 + 𝑏1 

 Eqn # 2: 𝑎1 = (𝑧1) = 1/( 1+ 𝑒 −𝑧1 ) 

Eqn # 3: 𝑧2 = 𝑎1 ∙ 𝑤2 + 𝑏2  

Eqn # 4: 𝑎2 = (𝑧2) = 1 /(1+ 𝑒 −𝑧2) 

 Eqn # 5: 𝐸 = 1 /2 (𝑇 − 𝑎2)2 

Updating w2: 

 
          = 0.45 - 0.4(-(0.25-0.7153))*(0.7153(1-0.7153))*(0.6023) 

          = 0.45 - 0.4*0.05706 
          = 0.427 
Updating b2: 

 



   = 0.65 - 0.4*(-(0.25-0.7153))*(0.7153(1-0.7153))*1 
           = 0.65 - 0.4*0.0948 

           = 0.612 
Updating w1: 

 
          = 0.15 - 0.4*(-(0.25-0.7153))*(0.7153(1 -0.7153))*0.45*0.6023(1-
0.6023)*0.1 

         = 0.15 - 0.4*0.001021 
         = 0.1496 
Updating w2: 

 
      = 0.40 - 0.4*(-(0.25-0.7153))*(0.7153(1-0.7153))*0.45*0.6023(1-
0.6023)*1 

      = 0.40-0.4*0.01021 
      = 0.3959 
 

Therefore we continue next iteration(feedforward) with the update 
values of w1,b1,w2 and b2. 
w1 = 0.1496     b1 = 0.3959 w2 = 0.427  b2 = 0.612 

x1 = 0.1. 
 

 
 
Q) What is Vanishing Gradient problem? 

As more layers using certain activation functions are added to neural 
networks, the gradients of the loss function approaches zero, making the 

network hard to train. 
 
Eg. In the below problem the derivatives with respect to weights are very 

small. 

 



So when we do back propagation, we keep multiplying the factors that are 
less than 1 by each other and gradients tend to smaller and smaller by 

moving backward in the network. 
This means the neurons in the earlier layers learn very slowly. The result is 

a training process that takes too long and prediction accuracy is 
compromised.  

 
 
 

 
Q) Explain indetail about CNN model. 
 

MLP‟s use one perceptron for each input (e.g. pixel in an image, multiplied 
by 3 in RGB case). The amount of weights rapidly becomes unmanageable 
for large images. For a 224 x 224 pixel image with 3 color channels there are 

around 150,528 weights that must be trained! As a result, difficulties arise 
whilst training and overfitting can occur. 

 
A Convolutional neural network (CNN) is a neural network that has one or 
more convolutional layers and is used mainly for image processing, 

classification, segmentation. 

 
Fig. CNN Architecture 



 
Input layer: 

The input to a cnn, is mostly an image(nxmx1-gray scale image and nxmx3-
colored image) 

 
Fig. RGB image as input 

Convolution layer: 

Here, we basically define filters and we compute the convolution between the 
defined filters and each of the 3 images. 

 
Fig. convolution operation 

 

In the same way we apply to remaining (above is for red image, then we do 
same for green and blue) images. We can apply more than one filter. More 
filters we use, we can preserve spatial dimensions better. 

 
We use convolution instead of considering flatten image as input as we will 

end up with a massive number of parameters that will need to be optimized 
and computationally expensive. 
Eg. We require 25 weights if we take 5x5x1 image with out convolution. 

      We require 16 weights(n-f+1 x n-f+1) if we take 5x5x1 image with 2x2 
convolution filter. 
 

By using convolution we can prevent overfitting of the model. 
 

It is worth to have ReLU activation function in convolution layer which 
passed only positive values and make negative values to zeros. 
 

Pooling layer: 
Pooling layer objective is to reduce the spatial dimensions of the data 

propagating through the network. 



1. Max Pooling is the most common, for each section of the 
image we scan and keep the highest value. 

 
Fig. Max Pooling with stride = 2 

Max. pooling provides spatial variance which enables the neural network to 

recognize objects in an image even if the object does not exactly resemble 
the original object. 

 
2 Average Pooling: Here, we take average of area we scan. 

 
Fig. Average Pooling with stride = 2 

 

Fully Connected Layer:  
Here, we flatten the output of the last convolutional layer  

and connect every node of the current layer with every  
other node of the next layer.  
 

This layer basically takes output of the preceding layer,  
whether it is a convolutional layer, ReLU or Pooling layer  

and outputs an n-dimensional vector, where n is  
number of classes pertaining to the problem.  

 

Fig. Fully Connected Layer 
 
Q) Differentiate Shallow NN and Deep NN. 

 

Shallow Neural Network Deep Neural Network 

It consists of one hidden layer It consists of more than one hidden 
layer 

It takes input as vectors only It takes raw data like images and 
text as input. 



 


